## A SET OF LINEAR EQUATIONS CONNECTED WITH HOMOFOCAL SURFACES.

By Thomas Muir, LL.D.

(Read February 28, 1906.)

1. It is usually stated that the set of equations

$$
\left.\begin{array}{l}
\frac{x_{1}}{b_{1}-\beta_{1}}+\frac{x_{2}}{b_{1}-\beta_{2}}+\frac{x_{3}}{b_{1}-\beta_{3}}+\ldots+\frac{x_{n}}{b_{1}-\beta_{n}}=1 \\
\frac{x_{1}}{b_{2}-\beta_{1}}+\frac{x_{2}}{b_{2}-\beta_{2}}+\frac{x_{3}}{b_{2}-\beta_{3}}+\ldots+\frac{x_{n}}{b_{2}-\beta_{n}}=1 \\
\cdots \\
\frac{x_{1}}{b_{n}-\beta_{1}}+\frac{x_{2}}{b_{n}-\beta_{2}}+\frac{x_{3}}{b_{n}-\beta_{3}}+\ldots+\frac{x_{n}}{b_{n}-\beta_{n}}=1
\end{array}\right\}
$$

was first solved by Binet* in 1837; and it is certainly true that subsequent to that date additional solutions were given by Chelini, Cauchy, Hädenkamp, and Liouville. $\dagger$ The solution given in Todhunter's "Theory of Equations," where a reference is misleadingly made to Grunert's " Archiv," is really Liouville's.

The object of the present note is to make known a solution which, though simpler than any of those mentioned, is not brought forward wholly on that account, but also in order to draw pointed attention to a paper of Murphy's in which is given a general mode of dealing with equations of the type above exemplified, and which bears a date five years prior even to Binet's paper. $\ddagger$

* Binet, J., "Observations sur des théorèmes de géométrie . . ." (Journ. (de Liouville) de Math., ii., pp. 248-252).
$\dagger$ Chelini, D., "Formazione e dimostrazione della formula che dà . . ." (Giornale Arcadico lxxxv. (1840), pp. 3-12).

Cauchy, A., " Mémoire sur les fonctions alternées . . ." (Exercices d’analyse et de phys. math., ii. (1841), pp. 151-159).

Hädenkamp, " Ueber Transformation vielfacher Integrale "(Crelle's' Journ., xxii. (1841), pp. 184-192).

Liouville, J., "Sur une classe d'équations du premier degré" (Journ. (de Liouville) de Math., xi. (1846), pp. 466-467).
$\ddagger$ Murphy, R., "On Elimination between an Indefinite Number of Unknown Quantities" (Trans. Cambridge Philos. Soc., v. (1832), pp. 65-76).
2. The essence of the solution consists in noting that to assert the validity of the given set of equations is the same as to say that the expression

$$
\frac{x_{1}}{\xi-\beta_{1}}+\frac{x_{2}}{\xi-\beta_{2}}+\frac{x_{3}}{\xi-\beta_{3}}+\ldots+\frac{x_{n}}{\xi-\beta_{n}}=1
$$

vanishes for $n$ values of $\xi$, namely, the values $b_{1}, b_{2}, \ldots, b_{n}$; and that therefore

$$
\begin{aligned}
x_{1}\left(\xi-\beta_{2}\right)\left(\xi-\beta_{3}\right) \ldots\left(\xi-\beta_{n}\right) & +x_{2}\left(\xi-\beta_{1}\right)\left(\xi-\beta_{3}\right) \ldots\left(\xi-\beta_{n}\right)+\ldots \ldots . \\
& \left(\xi-\beta_{1}\right)\left(\xi-\beta_{2}\right) \ldots\left(\xi-\beta_{n}\right)
\end{aligned}
$$

must be identically equal to

$$
\mathrm{A}\left(\xi-b_{\mathrm{I}}\right)\left(\xi-b_{2}\right) \ldots\left(\xi-b_{n}\right) .
$$

Since the only term containing $\xi^{n}$ in the left-hand member is $-\xi^{n}$, it follows that $A$ is -1 . We have only then to put $\xi=\beta_{1}, \beta_{2}, \ldots$ in succession in this identity and we obtain

$$
x_{1}=-\frac{\left(\beta_{1}-b_{1}\right)\left(\beta_{\mathrm{I}}-b_{2}\right) \ldots\left(\beta_{1}-b_{n}\right)}{\left(\beta_{1}-\beta_{2}\right) \ldots\left(\beta_{1}-\beta_{n}\right)}, \quad x_{2}=
$$

3. As a second example, which readily suggests others, let us take the set

$$
\left.\begin{array}{r}
a_{1} x_{1}+a_{1}^{2} x_{2}+a_{1}^{3} x_{3}+\ldots+a_{1}^{n} x_{n}=-1 \\
x_{1}+2 a_{1} x_{2}+3 a_{1}^{2} x_{3}+\ldots+n a_{1}^{n-1} x_{n}= \\
a_{2} x_{1}+a_{2}^{2} x_{2}+a_{2}^{3} x_{3}+\ldots+a_{2}^{n} x_{n}=-1 \\
\ldots a_{n-1}^{n} x_{n}=-1
\end{array}\right\} .
$$

Here the equivalent assertion is that the expression

$$
1+\xi x_{1}+\xi^{2} x_{2}+\xi^{3} x_{3}+\ldots+\xi^{n} x_{n}
$$

vanishes for $n-1$ values of $\xi$, namely, the values $a_{1}, a_{2}, \ldots, a_{n-1}$, and that its differential-quotient with respect to $\xi$ vanishes for $\xi=a_{\mathrm{r}}$. We thus learn that it is of the form

$$
\mathrm{A}\left(\xi-a_{1}\right)^{2}\left(\xi-a_{2}\right)\left(\xi-a_{3}\right) \ldots\left(\xi-a_{n-1}\right):
$$

and observing that it becomes 1 when $\xi$ is put $=0$ we learn further that

$$
\mathrm{A}=\frac{(-1)^{n}}{a_{1}^{2} a_{2} a_{3} \ldots a_{n-i}}
$$

Our identity thus is

$$
1+\xi x_{\mathrm{r}}+\xi^{2} x_{2}+\ldots+\xi^{n} x_{n}=\frac{(-1)^{n}\left(\xi-a_{1}\right)^{2}\left(\xi-a_{2}\right)\left(\xi-a_{3}\right) \ldots\left(\xi-a_{n-\mathrm{r}}\right)}{a_{\mathrm{r}}^{2} a_{2} a_{3} \ldots a_{n-1}},
$$

and equating coefficients of like powers of $\xi$ we obtain

$$
\begin{aligned}
& x_{n}=\frac{(-1)^{n}}{a_{1}^{2} a_{2} a_{3} \ldots a_{n-\mathrm{r}}}, \\
& x_{n-\mathrm{r}}=\frac{(-1)^{n+\mathrm{r}}\left(2 a_{\mathrm{r}}+a_{2}+a_{3}+\ldots+a_{n-\mathrm{r}}\right)}{a_{\mathrm{r}}^{2} a_{2} a_{3} \ldots a_{n-\mathrm{r}}},
\end{aligned}
$$

4. The close connection of these with the cases considered by Murphy will be evident when we quote what he calls his "principle," which is, "If we make the right-hand member of the $\xi$ th equation disappear by transposition, the left-hand member is then a function of $\xi$ which vanishes when $\xi$ is any member of the series 1 , $2,3, \ldots, n$ : and therefore it must be of the form $\mathrm{P}(x-1)(x-2)$ $(x-3) \ldots(x-n) . " \quad H i s$ cases are those where the $\xi$ th equation is
(a) $\frac{1}{\xi}+\frac{x_{\mathrm{r}}}{\xi+1}+\frac{x_{2}}{\xi+2}+\ldots+\frac{x_{n}}{\xi+n}=0$,
(b) $1+\xi x_{\mathrm{x}}+\xi(\xi+1) x_{2}+\ldots+\xi(\xi+1) \ldots(\xi+n-1) x_{n}=0$,
(c) $1+\xi x_{\mathrm{I}}+\xi^{2} x_{2}+\ldots+\xi^{n} x_{n}=0$.
